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SUMMARY 

The baseline numerical procedure of interest in this study combines flux vector splitting, flux difference splitting 
and an explicit treatment of the diffusion terms of the flow equations. The viscous terms are treated explicitly to 
preserve the wave propagation properties of the Euler fluxes and permit splitting. The experience with this scheme 
has been limited to laminar or, at best, ‘eddy viscosity’ flows. In this paper the applicability of the scheme is 
extended to include the calculation of turbulent Reynolds stresses in supersonic flows. The schemes and our 
implementation are discussed. Both laminar and turbulence subsets of the ReynoldsFavre-averaged equations are 
tested, with a discussion of relative performance. The test problem for turbulence consists of a zero-pressure- 
gradient supersonic boundary layer as well as a supersonic boundary layer experiencing the combined effects of 
adverse pressure gradient, bulk compression and a concave streamline curvature. Excellent agreement with 
experimental measurements is observed for most of the quantities compared, which suggests that the numerical 
procedures presented in this paper are potentially very useful. 
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1. EY’TRODUCTION 

Our studies have the ultimate goal of producing a programme which can be used to generate reliable 
engineering design data for realistic aerodynamic (supersonic and hypersonic) systems. We also want 
numerical calculations that could be used for some fundamental studies of turbulence. 

Most engineering fluid dynamic problems involve turbulent flows and it seems that modelling of the 
turbulence is a feasible way to attack the analysis. However, in the hierarchy of turbulence models it 
appears that the simplest models that have any chance of dealing with realistic engineering problems 
are those based on second-moment closures.’ Lower-order models have serious defects that preclude 
them from consideration for all but the simplest systems. For instance, zero-equation models such as 
the Baldwin-Lomax’ model are seriously limited by the near-wall formulation, while two-equation 
models such as k-E or k-u are based on assumptions which, among other things, prevent accurate 
simulation of flows with significant normal stre~ses.~ Second-moment calculations can provide 
engineering design data as well as data that could be used for more fundamental studies of some 
aspects of turbulence. 

It is well known that turbulence models, including those based on second-moment closures, have not 
always performed well. Another complicating factor is the choice of numerical method, for which there 
are multitudes of options with varying degrees of efficiency. In the rest of this section we will discuss 
some of these schemes, pointing out their strengths and weaknesses. We will conclude the section with 
a discussion of the baseline scheme upon which our work is based. 
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Options for calculating the equations of interest in this work include the flux-difference-splitting 
(FDS) schemes such as those of Roe? Harten and Lax5 and Ru~anov,~ the flux-vector-splitting (FVS) 
schemes'~' as well as central difference ~ c h e m e s . ~ > ' ~  Of these, Roe's method has been shown to be the 
most accurate and the one that gives the sharpest shock resolution." From the comparison exercise," 
one-fifth to one-half as many points were required to resolve a shear layer using Roe's fluxes in a first- 
order scheme compared with using other fluxes in second- or even thud-order schemes. This would 
seem to be quite important especially in three-dimensional flows, where a large pay-off might be 
gained by the use of fewer points. However, all three schemes have defects. The basic Roe scheme 
could produce entropy-violating solutionsI2 and has a slower convergence compared with FVS.I3 FVS 
tends to be too diffu~ive,'~ while the central difference schemes usually involve the explicit addition of 

with the attendant issue of 'how much is enough at a location'. Further, in current 
implementation none of the procedures performs well when shocks are not aligned normally to cell 
surfaces.I4 

Another potential candidate for use with high-speed flow simulation is the Gauss-Seidel method of 
MacCormack." This is a line method with a Gauss-Seidel treatment of 'out-of-line' terms. When 
applied to the two-dimensional Navier-Stokes equations for steady state transonic cascade flow, very 
impressive performance was reported:" 50 time steps to reach convergence, with CFL values as high 
as 1 0'. Unfortunately, extension of the cascade problem to three dimensions met with severe numerical 
convergence diffic~1ties.l~ Moreover, MacCormackIs observed that a three-dimensional algorithm that 
worked (for the cascade problem) is approximately twice as expensive as an approximate factorization 
scheme and it is not clear that this algorithm will work for general three-dimensional flows. 

Other options of numerical methods include the diagonalized alternating direction implicit methods, 
with and without approximate factorization or rnultigrid'"'', and the diagonally inverted LU implicit 
multigrid scheme.'s23 In one implementation of this approach the time-linearized implicit operator is 
approximated as the product of three one-dimensional factors, each of which is diagonalized by a local 
similarity transformation. Thus only a decoupled system of scalar pentadiagonal equations need be 
solved along each line. This approach is believed to have good high-wave-number damping, making it 
a suitable algorithm for smoothening in multigrid approaches. Yokota20 has applied this method to 
solve the Reynolds-averaged equations using the k--E method. The method appears promising. In fact, 
the k--E equations involve a simple 2 x 2 matrix system which can be inverted algebraically using the 
similarity transformation approach. However, in our opinion one disadvantage of this approach relative 
to flux splitting (Roe or Steger-Warming) is the explicit addition of dissipation terms. A blend is used: 
fourth-difference terms to prevent odd-even decoupling and second-difference terms to stabilize the 
calculations near shocks. A procedure to determine the optimum amount of dissipation for a variety of 
situations would be desirable. 

HOPE and AUSM" are two new options of numerical methods, of which AUSM is more promising 
from the standpoint of non-entropy violation, accuracy, computational efficiency, simplicity and the 
ability to give good results when shocks are not aligned normally to cell surfaces. From their studes, 
Liou and Steffen24 seem to have understood the cause of the diffusion error that is present in van Leer's 
method as well as the non-physical entropy-violating solutions that have been observed with the basic 
Roe method. Using a splitting of the advective velocity component, AUSM is formulated to take care 
of these problems, giving high accuracy with reduced complexity and computational effort and an 
efficiency that rivals FVS. As an example, AUSM does not exhibit the so-called carbuncle 
phenomenon that has been observed when e.g. the basic Roe scheme is used to calculate supersonic 
Aows over circular cylinders.I2 However, AUSM is not yet well established. 

For very-high-order calculations the essentially non-oscillatory (ENO) schemes25 come to mind. 
These are extensions of the Godunov scheme in which high accuracy is obtained by using a large 
stencil and a 'reconstruction' process that employs cell-averaged values in the stencil. Discretization 
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across discontinuities (and hence the Gibbs phenomenon) is inhibited by choosing the stencil 
adaptively from the smooth part of the flow. There are several variations of the EN0 procedure, one of 
which works directly on the fluxes rather than the cell averages and uses a special class of TVD high- 
order Runge-Kutta scheme for time integration.26 The high accuracy of EN0 scheme makes them of 
interest in direct numerical simulation (DNS) of turbulence, where comparisons with the traditional 
spectral method have shown excellent agreement.26 The so-called compact (Pad6 approximant) 
procedures are also useful in this regard.27 However, the EN0 and compact schemes tend to be very 
expensive. 

For the present studies we are interested in an implicit, finite volume, LU procedure in which FVS 
and FDS are combined13 to utilize the best of these two common methods: faster convergence in the 
case of FVS and more accurate results and sharp resolution of shocks in the case of FDS. Calculations 
based on this scheme have been observed to give good performance on a variety of high-speed 
fl0ws.’~9~* However, the experience with this scheme has been limited to laminar or eddy viscosity 
flows. The contibution of the present work can be found in the extension of the approach to include 
the transport equations for the six components of the Reynolds stress tensor and an additional equation 
for turbulence dissipation. In the following section the mean equations are given. This is followed by a 
discussion of the closure models and the final form of the turbulence equations. We then present the 
numerical procedure and our implementation. Sample results are given for the shock tube problem and 
Carter’s supersonic laminar boundary layer problem. We also calculated a zero-pressure-gradient 
supersonic turbulent boundary layer (TBL) as well as a TBL experiencing the combined effects of an 
adverse pressure gradient, bulk compression and concave surface curvature. Excellent results were 
observed compared with experimental measurements. 

2. GOVERNING EQUATIONS 

To obtain the mean flow equations, the Navier-Stokes equations are first Reynolds averaged. We then 
apply Favre (mass) averaging in order to get the equations in a relatively simple form. The resulting 
equations are shown below, where an ‘overbar’ indicates the mean relative to Reynolds averaging, with 
a ‘double prime’ indicating the fluctuation. A ‘tilde’ and a ‘single prime’ are the corresponding 
notations for Favre averaging. 

Conservation of mass: 

Conservation of momentum: 

where the Favre-averaged Reynolds stress tensor is - 
r.. - -pu!u!. 1 1 -  l J  

Conservation of energy: 

The turbulent energy flux ETk is defined to be 
-cy 

Y u!u!u’ 
J J k  E ‘ u ~  = C,T‘UL + iij~’& + - N N 

2 

(3) 

( 5 )  
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The mean viscous stress tensor 3~ is given by 

.++-) aui auj - p d X k d i j ” p  2 T  
--!+-J aii. aii. 

ax, ax1 (q a,) 

while the mean heat flux is approximated as 

The mean pressure is related to the mean density and temperature through the equation of state 

p = pRT (8) 

and thus 
- 

(9) p = ( y  - - @ j i &  - ‘-u;u; 2p ’ .) - - ( y  - I)@. 

In these equations p,  t ,x i ,  ui, p ,  T ,  E ,  q,  C,, p, IC, R, e and y denote density, time, ith co-ordinate 
direction, ith velocity component, pressure, temperature, total energy, heat flux, specific heat at 
constant volume, absolute viscosity, thermal conductivity, gas constant, internal energy and ratio of 
specific heat respectively. 

The mean equations can be written in a more compact form for clarity: 

where 

q =  pi] 
is the vector of conserved variables, 

is the tensor of convective terms and 
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3. TURBULENCE MODELS 

The terms -pu),$ a!’ u!’, pNu;, T‘u; and u)&/2 in the mean equations are not known or expressible 
in terms of the solution variables. Thus models have to be given to assign values to them or to express 
them in terms of the solution variables. The ReynoldsFavre-averaged transport equations are solved 
for the Reynolds stress tensor, for which the equations are given by 

---- CV- 

Jk J 

where 

In equation (14), from left to right, we have the time rate of change of the Reynolds stress at a fixed 
point, the net convection of Reynolds stress by the mean flow to the fixed point, the local production 
(P,) of Reynolds stress, the local pressure-strain (IIg), the net difisive transport (T,k,k)  of Reynolds 
stress to the fixed point, the local dissipation tensor (E,, solenoidal plus compressible) and the local 
pressure-dilatation. The last four terms represent the ‘production’ of Reynolds stress at the fixed point 
by the Favre (mass)-averaged velocity. In these equations the time rate of change of the Reynolds 
stress, the convective terms and the production terms are closed, whereas II,, Tgk ,k ,  E,, the pressure- 
dilatation and the mass-averaged velocity terms are unclosed. 

Some of the unclosed terms in these equations are modelled using the variable density extension of 
the incompressible models. Such is the case for all terms that do not contain the divergence u ~ , ~ ,  with 
the exception of the Favre velocity terms which have no analogy in incompressible flows. Terms with 
divergence and the Fane-velocity terms are modelled from compressible turbulence considerations. 

The model we have used for the dissipation rate tensor is29 

(15) 
& -  

&.. y - - P [u:@ + 5 (1 -f,)k6,1, 

wherefs is a function of the turbulent Reynolds number Rt = k2/v& and is given byfs = lo/( 10 + Rt) .  
This model contracts to 2~ at the wall, meaning that it has the correct asymptotic behaviour at the 
wa11.30 
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The transport equation we have used for the solenoidal dissipation is based on a variable density 
extension of the incompressible model of Hanjalic and Launder:31 

where the constants are C, = 0.18, C,, = 1.44, C,, = 1.9. The wall value for cs is (cS), = 2 ~ ( a k ' / ~ / d y ) ~ .  
The model for the pressure-strain correlation I Iv  is32 

where 

- 
is the anisotropy tensor and q2 = ubu; = 2k denotes the trace of the Reynolds stress tensor; k is the 
lunetic energy of turbulence. A new model that incorporates the effect of Mach number has been 
proposed for the fast term33 but has not been thoroughly tested. We include wall effects in the 
pressure-strain by assuming the model of Launder and Shima:34 

where the slow wall correction term is given by 

and the fast wall correction term is given by 

nF2 = ci F b n k n m d j j  - $ ( n : k n & n j  + n j k n k n i ) ] .  (21) 

The near-wall damping function f is normalized to unity in the fully turbulent region of a turbulent 
boundary layer. The quantity y i n i  is the normal distance to the wall, with y i  representing the Cartesian 
wall position vector having a unit normal vector ni. The quantity I represents the turbulent length scale 
of the flow, which is estimated to be 

I = k3/2/&. 

Launder and S l ~ i m a ~ ~  have shown the near-wall damping function f to be 

The constants Cl, and C;, taken from Reference 35, are Ci = 0.5 and C; = 0.3. 
The transport term T,k,k consists of three parts, i.e. 

Ti jk ,k  = C i j k , k  + E i j k , k  - D i j k , k  . 
v v v 

turbulent diffusion pressure diffusion viscous diffusion 
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-c-_- 

The model for the triple correlation c y k , k  = pu!u'.u', 1 1  k is3' 

The model coefficient C, = 0.018. We will assume that pressure diffusion effects are included in the 
model for the triple correlation, as did Hanjalic and Launder?] The various other models proposed for 
pressure diffision have not performed significantly better than the one used here.36 

The viscous difision term is modelled according to Launder and Shima34 and is given by 

The Favre-averaging procedure introduces the quantity 4 which does not appear in the 
incompressible form of the Reynolds transport equation. Gradient transport is assumed 

The model constant C,, = 0.09 is taken from Reference 37, while the turbulent Schmidt number ap = 
0.7. 

The turbulent quantities that need to be closed in the mean energy equation are 

- - From the definition of the transport term in the Reynolds stress transport equation the quantities o%uJ!, 
p"ui and uju$b/2 can be combined to yield 

- - U!U!U' u ! ~  -pt iUii  J J k = Tjk 
Jk J k 2  2 '  

Thus the same models in the Reynolds stress transport equation can be employed for the corresponding 
terms in the meEenergy equation. 

Concerning Ti& evolution equations can be written38 which introduce three additional transport 
equations. For simplicity we use gradient transport as in Reference 37: 

where OT = 0.7 is the turbulent Prandtl number. 

consists of two parts, i.e. 
Sarkar et al.39 and Zeman4' have suggested that for large Reynolds numbers, E in equation (15) 

E = Es + Ed, (27) 
where E~ represents the solenoidal dissipation and Ed represents the compressible dissipation: 

Here d" = denotes the fluctuating dilatation and o: = &@U& represents the fluctuating vorticity, 
where &ijk is the permutation tensor. Models for Ed are based on the assumption that the compressible 
dissipation is a function of the turbulent Mach number. Zeman's approach40 assumes the existence of 
shock-like structures embedded within the energetic turbulent eddies, while Sarkar et al.39 use low- 
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Mach-number asymptotics to obtain a scaling relation. With Sarkar et al.'s model, Ed = M:, where 
Mt = q 2 / 2  is the turbuleKMach number, c = J ( y p / p )  is the speed of sound and q2 is twice the 
turbulent lunetic energy uiui. Zeman's model is more general, as it incorporates intermittency and 
dependence on y, the ratio of specific heats. One form of Zeman's model is 

where Ed = 0 if M,* 5 M,, with Mto = 0.2, OM = 0.66, Cd = 0.75 and 

We are experimenting with these two models for Ed, although the results presented here were obtained 
using that of Sarkar et al. 

With the foregoing, the final form of the turbulence equations can be written as 

aq, aGk aD; 
srs1 +s,2 +-, -+-Is.= 

at axk axk 

where 

is the vector of unknown stresses, 

is the tensor of convective terms, 

s,1 = 
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and 

pk - a&, - a&, 
Drs7,2 = C, - U' U' - + U ~ U ;  - + 

E, ( ax ?Y 

p k  - a& - 86, 
Drs7,3 = C, - U'U' -S + U ~ U ;  - + 

Es ( ax eY 
Initial conditions and boundary conditions will be discussed under specific sample calculations. 

4. NUMERICAL PROCEDURE 

Our procedure is a finite volume one in which FVS and FDS are combined, as discussed earlier in this 
paper. We start by applying the divergence theorem to equation (10) to obtain 

where F 5 Gknk, F, 3 G@nk and dS is an element of a surface having an outward normal nk. 
A cell-centered finite volume is used, where the vector of dependent variables, q or qn, is assumed 
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Surloca i + l / Z . j . b  

I , I / 

IL_, 9.i  t u r l o c b  i - l / 2 . i . b  

Figure 1 .  A typical finite volume cell showing the index notation. The notation (i , j ,  k) refers to the cell centroid where the 
pximary variables are solved, while fractional indices such as (i + f , j ,  R )  refer to control volume surfaces 

to 'reside' at the centroid of the cell. The index convention is shown in Figure 1. If the fluxes F and F, 
are assumed constant over each cell surface, the integrals above can be approximated by the implicit 
equation 

The procedure for calculating surface areas and cell volumes is discussed later in the paper. Euler time 
integration of equation (3 1) gives 

where Aq" = qn+l - 9". 
Bean-Wa~ming~~ linearization gives 

F"+l = F" + (AAq)" + O(A3). (32) 

In the FDS scheme the exact Jacobian of the Roe matrix is too expensive to compute and 
approximated Jacobians have been observed to give poor convergence compared with FVS.I3 In the 
present work the FVS scheme is used to evaluate the Jacobians in the implicit part (left-hand side) of 
the matrix equation (38) (below) for Aq. The Euler flux F" in the residual part (right-hand side) is 
computed using the FDS scheme. With FDS via Roe splitting$2 the flux at the surface is evaluated as 
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Here 2 k  are the characteristic wave speeds of the Riemann problem and f f k  represents the projection of 
Aq onto the eigenvectors of Roe's approximate Jacobian, obtainable from Aq = c: U k R k .  R k  are the 
right eigenvectors of Roe's matrix. The fluxes Fi+ l  j , k  and F i j , k  in equation (34) are evaluated using the 
conserved variables q ; + l j , k  and q i J , k  respectively. Following F1ink,4~ the sum a k l  A k l R k  is written in 
terms of five flux jumps A F k ,  each associated with a distinct eigenvalue &, of Roe's matrix. 

For the FVS technique 

(35) 
f n+l 

( F  ) = (F*)" + (A*Aq)", 
where the plus and minus signs indicate evaluation based on the negative and positive eigenvalues of 
matrix A respectively. In terms of the centroid values, surface quantities are approximated e.g. by 

(AAq)l+ 1/2 ,  j , k  = (AfAq)t  j , k  + (A-Aq);+ 1 ,  j , k '  

Flj" = Flj + O(At) 

(36) 

(37) 

The diffusive flux is linearized as 

and treated explicitly to preserve the upwinding scheme. 
Substitution of equations (35H37) into equation (32) yields the matrix system 

(I + j ,  kSi+ 1 /2 ,  j ,  k 

l , j , k s i -  1 / 2 , j , k  + ( A + ) y , j -  1 ,  k s i , j -  1 /2 ,  k + ( A + ) t j ,  k- l S i , j , k -  1 /2O 

kSi, j + 1 /2 ,  k kSi, j ,  k + 1/2' 

+ 
+ ( A - ) : j , k s ; - l / 2 > j , k  + ( A - ) ; j , k S i , j - 1 / 2 , k  + ( A - ) t j , k S i , j , k - 1 / 2 0  

+ ( A - ) y + l , j , k s i +  1 / 2 , j , k  + ( A - ) ; j + l ,  k S i , j + 1 / 2 ,  k f ( A - ) t j , k + l S i , j ,  k + 1 / 2 O 1 ) A q n  

where '0' indicates that e.g. the term (Ap);+ 1 ,  j ,  kSi+ 1 /2 ,  ,, k acts on (Aq")i+l, j ,  k .  Furthermore, equation 
(38) is a matrix-vector equation, so that each term is a vector after carrying out the multiplications. The 
indices i ,  j ,  k are used to denote grid points in the local directions i , j ,  k ,  in which ( i , j ,  k )  is the centroid 
of a cell and half-indices such as i + 1/2 denote the surface of the cell (see Figure 1). When a scalar, 
vector or matrix is subscripted with these indices, we imply that the scalar or each element of the vector 
or matrix is to be evaluated at the point or surface indicated by the indices. Note that the symbol S in 
equation (38) is a scalar which denotes the area of the surface indicated by the subscripts. 

It is impractical to solve equation (38) because the bandwidth of the resulting matrix system is too 
large. Many different techniques are used to simplify the task. The most common of these are the 
alternating direction implicit (ADI)44 method and the lower-upper (LU) decomposition method (to be 
discussed later). Jameson et al. have compared these two methods and observed that (i) LU 
decomposition is more advantageous for three-dimensional calculations because only two passes 
through the domain are used while the AD1 method requires three, (ii) the LU method is 
unconditionally stable while the AD1 method is unconditionally unstable and (iii) the LU method 
converges faster than the AD1 method for the same time step. LU decomposition is used in this paper. 

In the LU method employed in the present work the coefficient matrix in equation (38) is split into 
two factors, one corresponding to all positive eigenvalues (lower block) and the other correspondmg to 
all negative eigenvalues (upper block). The resulting factored equation is 
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At 
V (40) = --R". 

A sparse block lower tridiagonal matrix is solved using forward substitution. Because boundary 
conditions are treated explicitly, Awn is set to zero at the 'left' and 'bottom' boundaries of the domain. 

Backward sweep 

+ y [ ( A - ) : j , k S i -  1 / 2 , j , k  + ( A - ) : j , k ' % , j -  1 / 2 , k  + ( A - ) t j , k S i , j , k -  1/2. ( At 

+ (A-):+ I,,, kSi+ 1/2, j ,  k +(A-): j +  1 ,  kSi, j + 1/2, k +(A-): j ,  k + l s i ,  j ,  k + 1/2.] Aq" 

(41) 
) 

= A@. 
A sparse upper tridiagonal matrix is solved using backward substitution. At the 'right' and 'top' 
boundaries of the domain, Aq" is set to zero for the same reason given above. 

Update solution 

q" + Aq". (42) q"+l = 

For the turbulence the analogous equations to (38) and (40)-(42) are 

(I + g [ ( G ) ; , , $ i + 1 / 2 , j , k  + ( G ) F j , k S i , j + 1 / 2 , k  + ( < ) : , , k S i , j , k + 1 / 2 .  

+ (<):- 1, j , k s i -  1/2,  j , k  f(G):,j- 1 ,  kS i , j  - 1/2 ,  k +(GI!, j,k - l s i , j ,  k - 1/2. 

+ (& 1: j ,  ksi - 1/2, j ,  k +(& ): j, k s i , j  - 1/2, k +(&)ti, $i, j ,  k - 1/2. 

+ (& )?+ 1 ,j, kSi + 1 / 2 , j ,  k +(&)ti + 1 ,  kSi, j + 1/2,  k +(&)ti, k + 1 &,j, k + 1/2.1 

6 6 

(EES), - c [(F:)"S], - [(F,)"S], + S:l V + Sk2V 
I =  1 I =  1 V 
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4.1. Gradient terms 

The diffusive fluxes G, and D, contain gradient (transport) terms that have to be evaluated on the 
surfaces. Since solution variables are located at cell centres, a method must be devised to properly 
handle these terms. The procedure used here is based on the work of V i n ~ k u r ~ ~  in whch the gradient 
of a scalar is evaluated based on the conservative definition 

A superscript asterisk on a variable implies reference to a secondary cell. Thus VY refers to the volume 
of a secondary cell whose centroid coincides with the centroid of the surface where the gradient is to be 
evaluated. The representation of the secondary cell is shown in Figure 2. In this figure, AI-Bl-B3-A3- 
A1 is the top surface of the left main cell, A3-B3-B5-A5-A3 is the top surface of the right main cell 
and A2-B2-B4-A4-A2 is the top surface of the secondary cell whose centroid is coincident with the 
centroid of the connecting surface with edge A3-B3. 

Appling the divergence theorem to equation (47) gives 

The integral in equation (48) can be evaluated as 

nkS*) i+  l , j ,  k + (d'nkr)i,j,  k + ( b n k S * ) i +  1 /2 ,  j +  1 /2 ,k  
* 84 v -=(4 

8 x k  

+ ( h S * ) i  + 1 /2 ,  j - 1 / 2 , k  + ( h S * ) i  + 1 /2 ,  j ,  k + 1/2 + ( 4 . k S * ) i  + 1,  j ,  k - 1/2' (49) 

Here the indices i, i + 1 ,  i + 1, etc. are unique and apply to both primary and secondary cells. Thus, 
while i ,  i + 1, i + 2, etc. are the centroids of primary cells, they are the surfaces of secondary cells. 
Now the 4s, surface areas and volumes of the secondary cells must be estimated with due regard to 
conservation. Since true conservation is required only on the original cells, suitable averages can be 
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centroid af riqht m e i i  cal l  I centroid of le f t  main cell 

coieci4enI  centroid ef  connectinq 
surtoce an4 racoador i  cal l  

Figure 2. Schematic of the secondary cells used for the evaluation of the gradient terms. Here a secondary cell is formed as the 
union of the right half of the cell on the left and the left half of the cell on the right 

taken for these quantities in the secondary cell. For example, the volume of the secondary cell whose 
centroid corresponds to the centroid of the surface (i + , j ,  k )  is evaluated by 

Similarly, the area of the surface i + l ,j ,  k of the secondary cell is 

- S i f l l Z , j , k  f S i + 3 / 2 , j , k  

' i * + l , j , k  - 2 
The value of 4 at the surface i + l , j ,  k of the secondary cell is obtained from the conserved 

variables which already reside there. However, when # is to be evaluated at i + 1 / 2 , j  + i ,  k ,  for 
example, it is found from45 

4:+ 112, j +  112, k = $(4i,j+ 1, k + 4i+ 1,  j +  I ,  k + 4i, j ,  k + 4i+ I , , ,  k ) .  (52)  

When the divergence of a vector is needed, 4 is replaced by f.pk in the above equations and the dot 
product is used. When the term &$,/a& is to be evaluated in the ith momentum equation, the normal 
nk is replaced by the appropriate n,, ny, or n, and 4 is replaced by 4k 

4.2. Implementation of boundary conditions 

Our implementation of boundary conditions is described briefly in this subsection. The physical 
boundaries of the domain coincide with control volume surfaces. Specified (Dirichlet) quantities are 
stored at the centroids of surfaces, ready for use in the evaluation of surface terms. 

For Neumann conditions on a boundary the normal derivative of the variable is prescribed in the 
form 

A second-order, one-sided difference method similar to that in Reference 46 is used. This procedure 
will be illustrated with Figure 3. 
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surface a m 3  

centroid 1-3 of  c djoccnl cell- - - - - 

sur lace s-2 
centroid 1-2 of boundary cel- - 

centroid 1-1 01 r u r l a c e  r=1 

boundary  surface 

Figure 3. Schematic of the implementation of Neumann boundary conditions at a physical boundary. Here two cells cross-stream 
from the boundary are shown, with centroids located at d2 and 4 respectively from the boundary surface 

A Taylor series expansion of a variable 4 about the surface centroid, denoted by point 1 = 1, gives 

Here d2 and d3 are the ‘near-normal’ distances from the wall to the cell centroids at 1 = 2 and 3 
respectively. These distances are estimated as 

v3 d3 = 2d2 + ___ 
s2 + s3 

where V2 is the volume of the boundary cell and V3 is the volume of the cell adjacent to the boundary 
cell and having surface S2 in common; S1, S2 and S3 are the areas of the boundary surface of the cell, of 
the surface connecting the adjacent cell to the boundary cell and of the opposite surface to the 
connecting surface respectively. 

From equations (53) and (54) the variables at the centroid of the boundary surface of the boundary 
cell can be evaluated as 

(57) 
( a 4 l w , =  1 (w: - d 2 4 ,  + 442 - 443 4, = d: - d: 

5.  SAMPLE CALCULATIONS 

5. I. Shock tube 

The shock tube problem, which is a widely used benchmark, is employed to validate the inviscid 
version of our code. In the present work the test is done for the three co-ordinate directions, one at a 
time. 
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p = l  
u - 0  
p = l  

In the initial state a diaphragm located at xo separates a perfect gas into two sections with different 
densities and static pressures (Figure 4). To the left of the diaphragm, the driver section, we have 
p = 1, p = 1 and u = 0. To the right, the driven section, p = 0.1, p = 0.125 and u = 0. These initial 
conditions were taken from Reference 47. At time t > 0 the diaphragm is broken, allowing a 
rarefaction wave to move into the high-pressure region and a shock wave followed by a contact 
discontinuity to propagate into the low-pressure region. 

The boundary con&tions for this problem are as follows. On the left, p = 1 ,  p = 1 and u = 0. At the 

A uniform mesh consisting of 100 elements, corresponding to an element volume V = 0.01 was 
chosen to match that in References 8,47 and 48. Further, the ratio At/ V = 0.4, Sod’s standard47 for the 
comparison studies, and a CFL number of 0.95 were used. Convergence to steady state is obtained in 
approximately 2000 time steps. 

right, p =z 0.1, p = 0.125 and u = 0. 

p = ,125 
II = 0 
p = . 1  

5. I. I. Results. Figure 5 shows the results of pressure, density and velocity as a h c t i o n  of distance 
(x )  along the shock tube. Excellent agreement is found in comparison with the results obtained by 
Steger and Warming’ and Roe.48 as the results lie on the same curves. The superiority of our scheme is 
evident when the results here are compared with the various finite difference schemes used by S0d.4~ 
For example, both the MacCormack and Lax-Wendroff schemes produce oscillations behind the shock 
and the transition of the shock occupies about 10 cells. In our scheme the shock occupies roughly three 
to five cells with no oscillations. The efficiency of the present method was improved by freezing the 
evaluation of the Jacobian matrices every 10 time steps. 

/ Dirlphrogm 

Initial Conditions 
Driver Section I Driven Section 
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Figure 5.  Results for the shock tube problem. Our calculations agree perfectly with the best results of Sod4' as the points from 
our calculation and the other results in Reference 47 lie on the same curve. Excellent agreement is also found with the results of 

Roe4 and Steger and Warming' 

5.1.2. Computing performance. On an IBM RSt6000 Model 530 the speed of computation is 
0.00045 s per time step per cell. It should be realized, however, that some of the calculations, which are 
three-dimensional, are redundant and a lower CPU time will be expected for a truly one-dimensional 
version of our code. 

5.2. Carter's problem 

The numerical solution of laminar supersonic flow over a flate plate was chosen to validate our 
programme for the Navier-Stokes equations. Carter's problem49 consists of a Mach 3 (M,  = 3) 
shocked flow passing over an infinitely thin plate at zero angle of attack (Figure 6). The problem is 
two-dimensional. The Reynolds number Re, based on the plate length is 1000. The non-dimensional 
x-co-ordinate (streamwise) stretches from 0 to 1.4, although the plate occupies only a distance of 1.2 
downstream. The non-dimensional y-co-ordinated (cross-stream) stretches from 0 to 0.8. All lengths 
are non-dimensionalized by the dimensional length of the plate. 

The Sutherland viscosity law is used in the non-dimensional form 

(58) 
4.1745T'" 

'=22769T+ 1.406' 

The boundary conditions are 

(i) upstream (. = 01 Y )  p =  1, P U l  = 1, puz = 0, T =  1, 
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--+ 
X 

Figure 6. Schematic description of the Carter problem. This is a laminar supersonic (Mm = 3) flow on a flat plate 

(ii) symmetry condition (0 < x < 0.2, y = 0) 

(iii) plate ( 0 . 2 5 ~ 5  1 . 4 , ~ = 0 )  

(iv) top boundaly (XI y = 0 . 8 )  

P =  1, P U l  = 1, PU2 = 0, T =  1, 

pE = PU: 

Y(Y - 2 
+--. 

Finally, the boundary conditions applied downstream (x = 1.4, y) are found by setting the gradients 
of the conserved variables to zero along the surface. That is, the variables at the downstream surface 
are extrapolated using the second-order, one-sided gradient procedure presented earlier in this paper. 
For all variables, initial conditions are set to the upstream conditions. 

Solutions were obtained for two topologically similar meshes, one consisting of 105 elements in the 
x-direction and 66 elements in the y-direction. The other mesh (mesh 2) has the same number of 
elements in the x-direction but 91 elements in the y-direction (Figure 7). Both meshes have the closest 
centroid located at distance of 0.0025 away from the wall. Results for both meshes were 
indistinguishable. A non-dimensional time step of 0.00 1 was used for time-accurate calculations 
with both meshes, resulting in a CFL number of 0.8 for both meshes. The equations are marched to 
steady state and convergence requires approximately 5000 time steps for both meshes. 

PT 
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--+ 
x 

Figure 7. Computational grid (mesh 2) for the Carter problem. There are 105 cells streamwise and 91 cells cross-stream 

5.2.1. Results. Comparisons were made between contour maps from our calculations for T, Mach 
number, p and p and those reported from the finite element calculations of Shakib.49 A more 
quantitative comparison is shown in Figure 8 for the computed surface pressure coefficient, defined as 

4 
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for mesh 2. This figure also contains the value of C, found from Carter’s experiment, which were taken 
from Reference 49. Close agreement is evident except in a small region just after the leading edge, 
where oscillations are observed in Carter’s results. It seems that the calculations of Carter are in error in 
this region, since many studies, exemplified by those of Shakib49 and Brueckner et also using various 
procedures have not been able to reproduce these oscillations. 

5.2.2. Computing performance. The speed of computation for the Carter problem is 0.001 1 s per 
time step per cell on the LBM RS/6000 Model 530. If we compare this performance with that for the 
shock tube problem, we find that it takes nearly 25% more CPU time when calculating Navier-Stokes 
solutions with an explicit treatment of the viscous terms. Again it should be noted here that the code is 
running as though calculations were taking place for three dimensions, so the CPU time should be 
viewed accordingly. 

5.3. Zero-pressure-gradient supersonic turbulent boundary layer 

Compressible turbulence in a zero-pressure-gradient boundary layer was one of the problems chosen 
to validate our code for the turbulence calculations. We compare our results with the measurements by 
Spina and Smits,” who carried out a fundamental study of this problem. The Reynolds number per 
unit length, Relm is 6.5 x lo7 and M, =2.87. 

The computational domain extends 0.5 m along x and 0.018 m along y. The dynamic viscosity is 
assumed to depend only on temperature and to obey the Sutherland law.33 

The boundary conditions for this problem are shown in Figure 9. Downstream (x = 0.5, y) the 
normal gradients of the conserved variables are set to zero. Similar conditions are used at the top of the 
domain (x, y = 0.018). Initial conditions were obtained by generalizing the procedure of Gero lymo~~~  
with an initial external turbulence intensity of 0.1%. The mesh used for the results shown in this paper 
(Figure 10) consists of 170 cells in the x-direction and 70 non-uniform cells in the y-direction. The 
centroid of the first cell along the plate is located at yf x 0-35; the mesh has 25 cells in y+ 5 50, a 
maximum aspect ratio of approximately 2778 for any cell and extends for approximately three 
boundary layers in the transverse direction. A time step size of 2 x s is used for the calculations. 
(Note that the Reynolds number is of the order of lo7.) The equations are marched in time and 
convergence was obtained at approximately 7500 time steps. 

5.3.1. Results. First the results at locations x = 0.3 and 0.5 m along the plate were compared and 
found to be essentially the same. For the purpose of comparison with the experimental measurements 
we assume 6 = 4 and $ x 0. Results are presented for x = 0.5 m. These results are non- 
dimensionalized to compare them with the experimental results of Spina and Smits.” The compared 
results are shown in Figures 11-13 respectively for the mean velocity, the Mach number and the profile 
of log-law velocity uf after van Driest transformation. Excellent agreement between the present work 
and experimental measurements is apparent. The broken line in Figure 13 represents the familiar 
analytical log-law results. 

5.4. Supersonic turbulent flow on a concave wall 

As a final demonstration of the potential usehlness of the schemes presented in this paper, we will 
discuss the calculation of a supersonic turbulent boundary layer experiencing the combined effects of 
an adverse pressure gradient, bulk compression and concave streamline c ~ r v a t u r e . ~ ~ * ~ ~  These effects 
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Figure 9. Model for the supersonic turbulent boundary layer problem of Spina and Smitss’ showing the boundary conditions 

result from flows over short regions of concave surface curvature. The upstream of the ramp consists of 
a Mach 2.87 boundary layer of thickness 6 = 0.025 m. The total pressure is 6.9 x lo5 N m-2 and the 
Reynolds number is 6.3 x lo7 m-’. The strong adverse pressure gradient case in which the boundary 
layer thickness-to-curvature ratio (6/R,) is 0.1 is calculated. More details of the flow conditions are 
available in References 53 and 54. 

Y t 

Figure 10. Computational grid used for the simulation of the supersonic turbulent boundary layer problem of Spina and Sn~i ts .~ ’  
There are 170 uniform cells streamwise and 70 non-uniform cells cross-stream. The largest cell aspect ratio is 2778, which occurs 

in cells adjacent to the boundary 
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Figure 11. Comparison of the profile of mean velocity C1 /Urn in our calculations and in the measurements of Spina and Smitss' 

Sample computed results are contained in Figures 14 and 15, where we show the wall pressure 
p w / p ,  and the skin hction Cf respectively as functions of x / 6 .  The experimental measurements from 
References 53 and 54 are also shown in these figures. Good agreement is evident. 

__ Current Work - Spino 

n on 0 25 0 50 0 75 I00 
Moch # /  (Moih #)d 

5 

Figure 12. Comparison of the profile of mean Mach number M/M- in our calculations and in the measurements of Spina and 
SmitSS' 
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Figure 13. Profile of log-law velocity u+ after van Driest transformation for supersonic turbulent boundary layer flow with zero 
pressure gradient 

5.4.1. Computing performance. The speed of computation of turbulent flows using second 
moments is 0.00394 s per time step per cell on the IBM RSl6000 Model 530. When compared with the 
performance for Carter's problem, it takes approximately four times more CPU time for the solution of 
turbulent flow calculations using second-moment closures. 

Figure 14. Wall pressure as a function of x for supersonic turbulent flow over a concave wall. The 
measurements while the full curve represents computed results 

symbols are experimental 
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Figure 15. Skin friction as a function of x for supersonic turbulent flow over a concave wall. The symbols are experimental 

measurements while the full curve represents computed results 

6. CONCLUSIONS 

Combining FVS and FDS and treating the viscosity terms explicitly produces very accurate 
calculations for both the Euler and the full Navier-Stokes equations. We have extended this baseline 
scheme, which is based on laminar or eddy viscosity flows, to include the equations for the six 
components of Reynolds stress and an additional equation for turbulence dissipation. Comparisons of 
our turbulence calculations with recent experimental measurements of supersonic turbulent boundary 
layers by Spina and Smits5’ show very good agreement for most of the quantities compared. We also 
calculated a supersonic turbulent boundary layer experiencing the combined effects of an adverse 
pressure gradient, bulk compression and concave streamline curvature. The agreement with the results 
of Degani and Smid4 and Jayaram et ~ 1 . ~ ~  is excellent. The speeds of computation (in seconds per 
time step per cell) on an IBM RS/6000 Model 530 workstation for the shock tube problem, Carter’s 
supersonic laminar boundary layer problem and the supersonic turbulent boundary layer with second- 
moment closures are 0-00045, 0.0011 and 0.00394 respectively. However, in all cases the code is 
running as if calculations were taking place for a three-dimensional problem, so the CPU times should 
be viewed accordingly. Based on the agreement of the computed results with experimental data, it 
would seem that the schemes presented in this paper are potentially quite useful. 
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